Topology-dependent interference of synthetic gene circuit function by growth feedback
نویسندگان
چکیده
منابع مشابه
A synthetic gene circuit for measuring autoregulatory feedback control.
Autoregulatory feedback loops occur in the regulation of molecules ranging from ATP to MAP kinases to zinc. Negative feedback loops can increase a system's robustness, while positive feedback loops can mediate transitions between cell states. Recent genome-wide experimental and computational studies predict hundreds of novel feedback loops. However, not all physical interactions are regulatory,...
متن کاملEmergent bistability by a growth-modulating positive feedback circuit.
Synthetic gene circuits are often engineered by considering the host cell as an invariable 'chassis'. Circuit activation, however, may modulate host physiology, which in turn can substantially impact circuit behavior. We illustrate this point by a simple circuit consisting of mutant T7 RNA polymerase (T7 RNAP*) that activates its own expression in the bacterium Escherichia coli. Although activa...
متن کاملIsogeometric Topology Optimization by Using Optimality Criteria and Implicit Function
A new method for structural topology optimization is introduced which employs the Isogeometric Analysis (IA) method. In this approach, an implicit function is constructed over the whole domain by Non-Uniform Rational B-Spline (NURBS) basis functions which are also used for creating the geometry and the surface of solution of the elasticity problem. Inspiration of the level set method zero level...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملNegative feedback regulation of Met-dependent invasive growth by Notch.
The hepatocyte growth factor (HGF) receptor encoded by the Met oncogene controls a genetic program-known as "invasive growth"-responsible for several developmental processes and involved in cancer invasion and metastasis. This program functions through several regulatory gene products, as yet largely unknown, both upstream and downstream of Met. Here we show that activation of the Notch recepto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Chemical Biology
سال: 2020
ISSN: 1552-4450,1552-4469
DOI: 10.1038/s41589-020-0509-x